

- 10N -

the possibility of being completely nonportable.

However, by consistently defining their semantics, C
avoids requiring a programmer to know the width of
aggregate structures when working with pointers to such

objects. Further, when constants of this sort are

necessary, the sizeof operator is very useful in

maintaining a portable program.

On the negative side! C’s notoriously weak type
checking allows highly nonportable constructs to be
created without any noise from the compiler. London
and Reiser [18] have 1listed four problems they
encountered during their experiences in moving UNIX and
C to the VAX-11/788. Two of the four suggestions they
make are directly related to the weak type checking

per formed in C.

1) The actual arguments in a procedure call should be
type checked against the procedure Qeglarat1on, and
a "dummy" declaration which specifies types be
permitted, even if the called _progedure is not
actually declared in the same compilation.

2) The ‘->° operator should be checked to insure that
the structure element on the right is a member gf a
structure to which a pointer on the left may point.

uld be declarable yitb any
name, as long as the name is unique within the

i i urrounding structure. (The current
;zzﬁgigﬁzﬁz sthat a structure element must ugéquiiz
correspond to an offset from the bgg1nn1ng Rk
structure, across all structures 1n ilcomgéads té
creates naming problems, gnd' frequently :

errors of the type noted in item 2 above.

3) A structure element sho

4) The issue of alignment to an even-byte (or other)

- A% -

boundary should be brought into the open, so that

arbitrary data structur
described. €S can be accurately

Of the suggestions noteg above, the problem addressed

in the first was found to be the most difficult to deal
with in experiences with the /6. The second item is a
by-product of the Ritchie ¢ compiler, the portable
compiler produces diagnostics for constructs of this
sort. The third is definitely a worthwhile suggestion,
and warrants further consideration. The 1last item
suggests a view of aggregate data structures similar to
that found in BLISS, [33], and in this author’s opinion
diverges from one of the nicer facilities of C. The
issue of alignment normally comes up only when trying
to model machine dependent data structures (i.e.
byte/word/bit layout of a particular structure). As
such, the the question of representing a structure in a
portable fashion is a moot point. The notion of an
aggregate structure in C is to group together items in

a single logical unit. If specific layout is required,

bit fields, and the like, may be employed to construct

a structure of arbitrary shape. Thus, the latter

suggestion appears to introduce unnecessary complexity
into C.

In summary, the C programming language seems to

be a successful tool for implementing portable software

- 152 -

systems because it has a rich set of primitives which

allow a programmer to use the full power of an

underlying architecture. 1t is also this ability to
get at the basic machine which allows introduction of
nonportable constructs. Consequently, unlike many other
programming languages, portability in C is easily
possible, but mostly up to the programmer . 5 5 il
interesting to note that the consideration of
portability is subject to consideration, most other
languages force "portability" on a programmer by

techniques of the sort noted previously in this

section.

3. Portability Between Widely Different Architectures

The question of portability, in general, 1is
currently not fully understood. Most people can
recognize a program, language construct, or the like,
as being nonportable, but few can pinpoint exactly what
makes a program Or programming language "portable”.

Further, when considering portability between machines

specifics of the particular architectures invariably

enter into any consensus formed. The basic. variants of

word size, data types, and addressability play a major

. . : f
part in forming conclusions, but aré, by definitiGes

little consequence when considering portability between

. i ance a
machines with similar architectures (for inst

- 353 =

PDP-11 and VAX-11). Thus, if one is to formulate

opinions about portability it gseems appropriate to

consider a worst case phenomenon. Since the /6

architecture is so much different from the PDP-11

architecture, it is worthwhile to consider the

experiences garnered from this research (the porting

project originated on a PDP-11, and had the /6 as its

target machine).

Word size, in and of itself, posed few problems.
Rather, the specific size of a word on the /6
introduced incompatibilities. A 24-bit word, with an
8-bit byte, invariably introduces the number 3 into
many calculations; while programs developed for the
PDP-11, where a 16-bit word and 8-bit byte are used,
introduce the constant 2. Worse, since 2 is a power of
2, division by 2 was often removed in favor of a right

shift. A portable construct of the form

(sizeof int/sizeof char)

quickly became standard in programs developed on the

/6 If the /6°s word size had been a power of 2,

further problems might have been eliminated, or more

easily dealt with. A machine with a word size which is

3 . aik
a power of 2 offers many optimizations of the s

: i vin
mentioned. Constructing a portable expression invol g

= AR -

a constant, as shown above, will be the rule of thumb

only if the compiler will perform the optimization from

a division to a shift. For a signed number, an

optimization is not possible (consider -1 divided by 2

and -1 right shifted 1 bit). Thus, at least in Ce 1kt
seems worthwhile to recommend expressions be created as

above, and that compilers be aware of their existence

as common practice and optimize accordingly (this

requires the expression be unsigned in type).

Data type incompatibilities cause problems mostly
when a programmer assumes no side effects will be
created when mixing them. In a language such as Pascal
mixing types is 1illegal, or well defined. C, on the
other hand, has been developed on a machine where
mixing types normally has no effect on the value of an
object. Consequently, many programs misuse this
property of the PDP-11 architecture. The recent
introduction of "type casts" to C was of major
importance in handling the multiple data type formats

of the /6. It appears portability between machines

with incompatible data type formats must be handled

either implicitly by a strongly typed language, oI with

much foresight, and constructs like type casts, in a

weakly typed language. The straight-line interpolation

of type conversions, in a weakly typed language, 1S

- 158 =

simple when compared to the nightmares introduced by

parameter passing. Handling parameter

incompatibilities is by far the most difficult problem

to manage in porting programs between architectures

with multiple data type formats; at the very least the

language support must be present to handle conversions.

A final problem is the method by which a target
machine addresses main memory. Most modern
architectures support the notion of byte
addressability, and some even allow bit strings to be
directly addressable. When considering the problems
introduced by movement from a machine which is byte
addressable to a machine which is not, the first thing
that comes to mind is how to handle the inevitable
incompatability between pointers. Should the language
being used not allow mixing of types of this sort, the
problem is nonexistant. However, should it be possible,
the architecture has a major impact on the portability
of a program. As discussed in chapter IX, there is
bound to be an information loss when converting between

formats. This problem appears, as much as anything, to

Bt s 3 need for type checking, for at least SOWE

cases of pointer manipulations. Strong type

st a
shouldn’t be required, but at the very lea

programmer must be notified of an irregularity.

REFERENCES

Aho, A. V., and s C Johnson - i

, . . " timal Code
Generation for Expression Trees"; JACS? 23(3); pp.
488-501; 1975. Also in Proceedings ACM Symposium
on Theory of Computing; PP. 207-217; 1975.

Aho, A..V., S. C. Johnson, and J. D. Ullman, "Code
Genera§1on for Machines with Multiregister
Opgrgtlons“: Proceedings 4th ACM Symposium on
Priciples of Programming Languages; pp. 21-28;
Jan. 1977.

Bruno, q., and R. Sethi, "Code Generation for a
One-Register Machine"; JACM 23(3); pp. 502-510;
July, 1976.

Calderbank, V. J., and M. Calderbank, "LSD
Manual"; CLM-PDN 9/71; Culham Laboratory UKAEA;
Abington, Berkshire; 1971.

Coleman, S. S., P. C. Poole, W. M. Waite, “The
Mobile Programming System: Janus"; National
Technical Information Center PB22@322; U. Ss
Dept. of Commerce; Springfield, Va.; 1973.

Harris Corporation, "Reference Manual - Slash 6
Digital Computer"; September, 1976.

IBM FORTRAN IV (G) COMPILER, Program Logic Manual;
1967.

Zahaaen, 8. C., "YACC = Yet Another Compiler
Compiler"; Bell Laboratories Computer Science
Techinical Report No. 32; July, 1975.

- iler: Theory and
Johnson, S. C., "A Portable Compl :
Practicé“; Proceedings 5th ACM Sympos1$mlgz?
Principles of Programming Languages; PP i :

January, 1978.

": Bell
wLint, A C Program Checker”;
s oot ' Technical Report No.

Johnson, S. '
Laboratories Computer Science
65; 1978.

Through the portable C

Johnson, S. C., "A Tour Manual, Vol. 2 -

Compiler"; UNIX Programmer S

[12]

[13]

(14]

[15]

[16]

[17]

(18]

[19]

(20]

[21]

[22]

(23]

Supplementary Documents, Se it
18, 1979. » Seventh Edition; January.

Johnson, S. C., and D. M. Ritchie, "Portability of
& Prggrams and the UNIX System"; Bell System
Technical Journal, Vol. 57, No. 6, Part 2; pg.
2021-2048; July-August, 1978.

Kernighan, B. W., and D. M. Ritchie, The ¢C

Programming Language; Prentice-Hall, Englewood
Cliffs, New Jersey; 1978.

Knuth, D. E., The Art of Computer Programming -
Volume 1; Addison-Wesley; Reading, Mass.; 1975.

Petfler, 8. J., *A De;ailed Tour Through the /6
Po;tablg C- Compiler™; Case Western Reserve
University, internal document; June 19840.

Leffler, S. J., "UNIX/24v Assembler Reference
Manual"; Case Western Reserve University, internal
document; 1988.

Lesk, M. E., S. C. Johnson, and D. M. Ritchie,
"The C Language Calling Sequence"; Bell
Laboratories internal memorandum; 1977.

London, T. B., and J. F. Reiser, "A UNIX Operating
System for the DEC VAX-11/788 Computer"; Bell
Laboratories Technical Memorandum 78-1353-4; July
7, 1978.

Miller, R., "UNIX - A Portable Opera;inq Systgm?";
Australian Universities Computing Science Semilnar;

February, 1978.

Nori, K. V., U. Ammann, K. Jensen, and H. Nageli,
The Pascal (P) Compiler Implementation Notes;
Institut fur Informatik, Eidgenossische
Technische; Hochschule, gurich; 1975.

i i t Machines";
Poole, P. C. "Hierarchical Apstrac -
Proceédings : Culham Symposium on Software
Engineering; April, 1971.

i ility of the BCPL
rds M. % The Port§b111 : .
gg;giler;; Séftware Practice and Experlence; Vol.

1; pp. 135-146; 1971.

Ritchie, D. M., s. C. Johnson, M. E. Lesk, and B.
r . . .

W. Kernighan,

"The C Programming Language"; BSTJ,

57(6) , Part 2; pg. 1991-2028; July-August, 1978.

Ritcbie," D. M., "A Tour through the UNIX C
Compiler"; UNIX Programmer’s Manual, Vol. 2 -

?ggglementary Documents, Seventh Edition; Jan. 18,

Setpi, R., and J. D. Ullman, "The Generation of
Optimal Code for Arithmetic Expression Trees";
JACM 17(4); pp. 715-728; October, 1978. Reprinted
as pp 229-247 in Compiler Techniques; ed. B. W.
Pollack; Auerbach; Princeton, New Jersey; 1972.

Shannon, W. A., "A Demand Paged UNIX Operating
System for the Harris /6 Computer"; Case Western
Reserve University, forthcoming Master’s Thesis;
Cleveland, Ohio. y

Snyder, A., "A Portable Compiler for the Language
C"; Master’s Thesis; M.I.T, Cambridge, Mass.;
1974,

Tannenbaum, A. S., "Implications of Structured
Programming for Machine Architecture"; CACM,
21(3); pp. 237-246; March, 1978.

UNIX Programmer s Manual, Vol. 1, Seventh Edition;
January, 1979.

Weber, L. B., "A Machine Independent Pascal
Compiler"; Master “s Thesis; University of
Colorado, Boulder; 1973.

Williams, M.: personal communications; Bell
Laboratories, Murray Hill, N.J.

Wulf, W., R. K. Johnson, . Bs Weinstogk, e 0
Hobbs, and C. M. Geschge, The Design of An
Optimizing Compiler; Elsevier Press; .

Habermann
1£, W., D. B. Russel, and A. N. E .
?gLIéS: 'A Language for Systems Programming”; CACM

1(12); pp. 788-796; December, 1971.

APPENDIX A

UNIX/24V UTILITIES

This appendix lists the wuser utility programs
that have been ported to UNIX/24V. Most all programs
were taken from the PDP-11 Release 7 distribution of
UNIX. In some instances the utility runs under both
the VULCAN operating system and UNIX/24V; these are
marked with a *, A list of the major utilities not
provided under UNIX/24V is also included. Items in the
latter list were not moved because their implementation
was highly nonportable, or because they were of 1little

utility to the project.

- 159 =

ar
basename
chgrp
cmp
dcheck
du

em (%)
grep(*)
14

1pd
make
mount
nice
pr
restor
size(*)
su
tail
time
umount
wC

yaze (*)

Current Utilities

arithmetic
cal
chmod
comm
dd
dump
fgrep
icheck
learn
lpr
mkdir
mv (*)
nm (*)
ps
rm(*)
split
sum
tar (*)
)
uniq
who

- 160 -

as(*)
cat (*)
chown
Ccp

daf
dumpdir
file
init
1n
18(*)
mkfs (*)
ncheck
od(*)
pwd

sed
strip
syms
tee
tsort
update
write(¥*)

at

cb
clri
date (*)
ai1ff
echo
getty
kill
login
mail (*)
mknod
newgrp
passwd
ranlib
sh
stty
sync
test
tty
wall
wump

Major Missing Utilities

adb requires ptrace system call

awk requires lex.

bec & dc bc requires dc which is
complicated, and as yet hasn’t
been looked at for portability

lex highly nonportable

lint requires sort

sort tried to port it, but still
buggy

tp no need for it, always use tar

Text Processing Programs

egn, ptx, must have nroff/troff to be

pubindex, useful, and nroff/troff is

roff, tbl, highly nonportable

nroff, troff, etc.

Fortran Processors
£77, m4, £77 uses the portable
ratfor, struct compiler, so careful study
must be made regarding the
changes to the intermediate

language
Uucp Utilities . :
uuc uux low pr}orlty, an require
uuc?éo, eéc. conversion of a packet driver

at kernel or user level

- 161 -

	KIC Document_pp1-12
	KIC Document_pp13-32
	KIC Document_pp33-52
	KIC Document_pp53-72
	KIC Document_pp73-82
	KIC Documentp83-102
	KIC Documentp103-122
	KIC Documentp123-142
	KIC Documentp143-161

