
























































































































































































































































































































- 149 -

instance, use indices instead of pointers) • The latter 
approach to portability (APL for instance) requires a 

simulated environment be moved with each new 
implementation of the language, so penalizes the 

language's implementer . C h , on t e other hand, is easy 

to implement and program in. It allows a user to 

directly employ the power of the target machine. This 

ability to "touch" the bare machine also allows the 

creation of totally nonportable constructs. 

In considering C as a portable language, a number 

of specific reasons have been recognized. The ability 

to abstract data structures avoids the simulation of a 

natural aggregation. For instance, a need for a 

collection of heterogeneous items needn't be simulated 

within an array. Because the constructs needed for the 

representation of a natural data structure are present 

in the language, moving a program from one machine to 

another may depend on the atomic operations expected of 

the language. 

Secondly, while C supports extensive address 

calculation features, problems involved in word size 

differences, data type incompatabilities, etc. are, for 

the most part, eliminated by natur al operator 

d e f i nitions and built-in primitives. 
In particular, 

t he no tions of addl'tion and subtr action have pointer 



- 150 -

the possibility of being completely nonportable. 

However, by consistently def' , 1n1ng their semantics, C 

avoids requiring a programmer to know the width of 

aggregate structures when working with pointers to such 

obj ects. Further, when constants of this sort are 

necessary, the sizeof operator is very useful in 

maintaining a portable program. 

On the negative side, C's notorious l y weak type 

checking allows highly nonpor t able constructs to be 

created without any noise from the compiler. London 

and Re iser [181 have listed four problems they 

encountered during their experiences in moving UNIX and 

C to the VAX-ll/7 80. Two of the four suggestions they 

make are directly related to the weak type checking 

performed in C. 

1) The actual arguments in a procedure call should be 
type checked against the procedure declaration, and 
a "dummy" declar ation which spec i fies type s be 
permitted, even if the cal l ed procedure is not 
actually declared in the same compilation. 

2) The '-)' operator should be checked to insure that 
the structure element on the right is a member of a 
structure to which a pointer on the left may point. 

3) A structure element should be declarable with any 
name, as long as the name is unique within the 
immediately surrounding structure. (The c~rrent 
requirement tha t a s t ructure element must un1quely 
correspond t o an offset from the beg i nning of the 
structure , across all structures in a compilation, 
creates naming problems, and frequen t ly leads to 
errors of the type noted in item 2 above.) 

4) The issue of alignment to an even-byte (or other) 



boundary 
arbitrary 
described. 

sho uld 
d ata 

- 151 -

be brought into the open, so that 
struc tures can be accurately 

Of the suggestio~ s no ted above, the problem addressed 

in the first was f ound to be the most difficult to deal 

with in experiences with the /6. The second item is a 

by-product of the Ritchie C compiler, the portable 

compiler produces diagnostics for constructs of this 

sort. The third is definitely a worthwhile suggestion, 

and warrants further consideration. The last item 

suggests a view o f aggregate data structures similar to 

that found in BLISS, [33], and in this author's opinion 

diverges from one of the nicer facilities of C. The 

issue of alignment normally comes up only when trying 

to model mach ine dependent data structures (i.e. 

byte/word/bit l ayout of a particular structure). As 

such, the the que st ion of representing a structure in a 

portable fashio n is a moot point. The notion of an 

aggregate struc ture in C is to group together items in 

" 1 "t If specl"fl"C layout is required, a single log l ca unl • 

bit fields, and the like, may be employed to construct 

a structure of arbitrary shape. Thus, the latter 

suggestion appears to introduce unnecessary complexity 

into c. 

In summary, the C prog r amming language seems to 

be a success f ul tool for i mpl ementing portable software 



- 152 -

systems because it has a rich set of primitives which 
allow a programmer to use the full power of an 

underlying arChitecture . It is also this ability to 

get at the basic machine which allows introduction of 

nonportable constr t C uc s. onsequently, unlike many other 

programming languages, portabil1°ty l°n ° C 1S easily 

possible, but mostly up to th e programmer. It is 

interesting to note that the consideration of 

portability is subject to· consideration, most other 

languages force "portability" on a programmer by 

techniques of the sort noted previously in this 

section. 

3. Portability Between Widely Different Architectures 

The question of portability, in general, is 

currently not fully understood. Most people can 

recognize a program, language construct, or the like, 

as being nonportable, but few can pinpoint exactly what 

makes a program or programming language "portable". 

Further, when considering portability between machines 

specifics of the particular architectures invariably 

enter into any consensus formed. The basic . variants of 

word size, data types, and addressability playa major 

part in forming conclusions, but are, by definition , of 

little consequence when considering portability between 

machines with similar architectures (for instance a 



- 153 -

PDP-II and VAX-II). 
Thus, if one is to formulate 

opinions about portabil ity it seems appropriate to 
consider a worst case phenomenon. Since the /6 
architecture lOS so h dO muc Ifferent from the PDP-II 

architecture, it is worthwhile to consider the 

experiences garnered from this research (the porting 

project originated on a PDP-II, and had the /6 as its 

target machine) • 

Word size, in and of itself, posed few problems. 

Rather, the specific size of a word on the /6 

introduced incompatibilities. A 24-bit word, with an 

8-bit byte, invariably introduces the number 3 into 

many calculations: while progra~s developed for the 

PDP-II, where a 16-bit word and 8-bit byte are used, 

introduce the constant 2. Worse, since 2 is a power of 

2, division by 2 was often removed in favor of a right 

shift. A portable construct of the form 

(sizeof int/sizeof char) 

quickly became standard in programs developed on the 

/6. If the /6's word size had been a . power of 2, 

further problems migh t have been eliminated, or more 

easily dealt with . A machine with a word s i ze which is 

ny optl"ml"zatlOons a power of 2 offers rna 
of the sort 

portable expression involving 
mentioned. Constructing a 



- 154 -

a constant, as shown above, will be the rule of thumb 

only if the compiler will f per orm the optimization from 

a division to a shift. For a signed number, an 

optimization is not possible (conslOder -1 dO ° lVlded by 2 

and -1 right shifted 1 bit). Thus, at least in C, it 

seems worthwhile to recommend expressions be created as 

above, and that compilers be aware of their existence 

as common practice and optimize accordingly (this 

requires the expression be" unsigned in type) • 

Data type incompatibilities cause problems mostly 

when a programmer assumes no side effects will be 

created when mixing them. In a language such as Pascal 

mixing types is illegal, or well defined. C, on the 

other hand, has been developed on a machine where 

mixing types normally has no effect on the value of an 

object. Consequently, many programs misuse this 

property of the PDP-II architecture. The recent 

introduction of "type casts" to C was of major 

importance in handling the multiple data type formats 

of the /6. It appears portability between machines 

Wl
o th d t formats must be handled incompatible ata ype 

° by a strongly typed language, or with either implicltly 

much foresight, 
and constructs like type casts, in a 

weakly typed language. 
The straight-line interpolation 

of type conversions, 
in a weakly typed language, is 



- 155 -

simple when compared to the . nlghtmares introduced by 
parameter pass i ng. Handling parameter 

incompatibilities i s by far the most difficult problem 

to manage in porting p b rograms etween architectures 

with multiple data type formats: at the very least the 

language support mus t be present to handle conversions. 

A final problem is the method by which a target 

machine addresse s main memory. Most modern . 
architectures support the notion of byte 

addressability , a nd some even allow bit str ing s to be 

directly addressable. When considering the problems 

introduced by movement from a machine which is byte 

addressable to a machine which is not, the first thing 

that comes to mind is how to handle the inevitable 

incompatability be t ween pointers. Should the language 

being used not allow mixing of types of this sort, the 

problem is nonexi s tant. However, should it be possible , 

the architecture has a major impact on the portability 

of a program. As discussed in chapter IX, there is 

bound to be an information loss when converting between 

formats. This problem appears, as much as anything, to 

motivate a need for type checking, for at least some 

. 1 t' s Strong type checking 
cases of pointer manipu a 10n • 

shouldn't be 
. d but at the very least a require , 

must be not ified of an irregularity. 
programmer r 



[1] 

[2 ] 

(3] 

REFERENC ES 

Aho, A. V., and S C 
Generation for .,. Johnson, "Optimal Code 
488-501; 1975 E~ire s~lon Trees:: JACM, 23(3): pp. 

h 
• so 10 Proceedlngs ACM S ' 

on T eory of Comput ing : pp. 207-217: 1975.ymposlum 

Aho, A. V., S. C. J ohnson and J 0 
Generation fo r Ma h" ,.. Ullman, " Code 
Operations": proceed~n~~es4thWl~~M ~ultir7gister 
Priciples of Pr ogramming LangUages.ympPpOSlu2m1 2

0
8

n 
Jan. 1977. ' . - : 

Bruno, J., and R. Sethi, "Code 
One-Register Machine": JACM 
July, 1976. 

Generation for a 
23(3): pp. 502-510: 

[4] Ca lderbank , V. . J., and M. Calderbank, "LSD 
Manual"; CLM-PDN 9/71· Culham L b t 
Abington, Be rkshire: 1971. a ora ory UKAEA: 

[51 Coleman, S. ' S., P. C. Poole, W. M. Waite, "The 
Mobile Prog r amming System: Janus": National 
Technical Info rmation Center PB220322: U. S. 
Dept. of Commerce : Springfield, Va.: 1973. 

[6] Har r is Corpora tion, "Reference Manual 
Digital Compute r ": September, 1976. 

Slash 6 

[71 IBM FORTRAN I V (G) COMPILER, Program Logic Manual: 
1967. 

[8 ] Johnson, S. C. , "YACC Yet Another 
Compiler": Bell Laboratories Computer 
Techinical Report No. 32; July, 1975. 

Compiler 
Science 

[9] Johnson, S. C., "A portable Compiler: Theory and 
Practice"; Proceedings 5th ACM Symposium on 
principles o f pr ogramming Languages: pp. 97-104: 
January, 1978 . 

[10] Johnson, S. C., "Lint, A C Program Checker": Bell 
Laboratories Computer Science Technical Report No. 
65: 1978. 

[111 Johnson, S. C., "A Tour Thr~ugh the portable 2 C 
Compiler"; UNIX programmer s Manual, Vol. -

- 156 -



- 157 -

Supplementary Documents, Seventh Edition' January 
10, 1979. ' . 

[12] Johnson, S. C., and D. M. Ritchie, "portability of 
C Programs and the UNIX System"· Bell System 
Technical Journal, Vol. 57, No.6, 'part 2; pg. 
2021-2048; July-August, 1978. 

[13] Kernighan, B. W., and D. M. Ritchi e , The C 
Programming Language; Prentice-Hall, Englewooa 
cliffs, New Jersey; 1978. 

(14] Knuth, D. E., The Art of Computer programming 
Volume 1: Addison-Wesley; Reading, Mass.: 1975. 

(15] Leffler, S. J., "A Detailed Tour Through the /6 
Portable C Compil~r"; Case Western Re se rve 
University, interna l document ; June 1980. 

{l6] Le ffl er , S. J., "UNIX/24V Assembler Re ference 
Manual": Case Western Reserve University, internal 
document: 1980. 

(17] Lesk, M. E., S. C. Johnson, and D. M. Ritchie, 
"The C Language Calling Sequence": Bell 

[18] 

Laboratories internal memorandum: 1977. 

London, T. B., and J. F. Reiser, "A UNIX Operating 
System for the DEC VAX-l l /780 Computer": Bell 
Laboratories Technical Memorand um 78-1353-4: July 
7, 1978. 

[19] Miller R. "UNIX - A portable Operating System?"; 
Austraiian'universities Computing Science Seminar: 

[20] 

[21] 

[22] 

February, 1978. 

, K V U Ammann , K. J ensen, and H. Nageli, Norl, •• , • 
The Pascal (P) Compiler Implement~t ion N?tes; 
Institut fur- Informa~ik, Eldgenosslsche 
Technische: Hochschule, Zurlch; 1975. 

poole, P. C., "Hierarchical A!;>stract Machines"; 
S um on software Proceedings culham ymPOSl 

Engineering: April , 1971. 

t b "l'ty of t he BCPL 
Richards, M., "The por all 

P ctice and Experience; Vol. 
Compiler": software ra 
1: pp. 135-146: 1971-

C Johnson, M. E. Lesk, and B. 
[23] Rl'tchl'e, D. M., S. • " BSTJ 

C pr ogramming Language : , w. Kernighan, "The 



- 158 -

57(6), Part 2: pg. 1991-2020: July-August, 1978. 

[24] Ritchie, D. M., "A Tour through the UNIX C 
Compiler": UNIX Programmer's Manual, Vol. 2-
Supplementary Documents, Seventh Edition: Jan. 10, 
1979. 

{25] Sethi, R., and J. D. Ullman, "The Generation of 
Optimal Code for Arithmetic Expression Trees": 
JACM 17(4): pp. 715-728: October, 1970. Reprinted 
as pp 229-247 in Compiler Techniques: ed. B. W. 
Pollack: Auerbach: Princeton, New Jersey: 1972. 

[26] Shannon, W. A., "A Demand Paged UNIX Operating 
System for the Harris /6 Computer": Case Western 
Reserve University, forthcoming Master's Thesis: 
Cleveland, Ohio. . 

[27] Snyder, A., "A Portable Compiler for the Language 
C": Master's Thesis: M.I.T, Cambridge, Mass.: 
1974. 

[28] Tannenbaum, A. S., "Implications of Structured 
Programming for Machine Architecture": CACM, 
21(3): pp. 237-246: March, 1978. 

[29] UNIX Programmer s Manual, Vol. 1, Seventh Edition: 
January, 1979. 

[30] Weber, L. B., "A Machine Independent Pascal 
Compiler": Master's Thesis: University of 
Colorado, Boulder: 1973. 

[31] Williams, M.: personal communications: 
Laboratories, Murray Hill, N.J. 

Bell 

[32] 

[33] 

Wulf, W., R. K. Johnson, C. B. Weinsto~k, S. O. 
Hobbs, and C. M. Gesch~e, The .Deslgn of An 
Optimizing Compiler: Elsevler Press, 1975. 

If W D B. Russel, and A. N. Habermann, 
~~LI~S:·'A ianguage for systems programming": CACM 
1(12): pp. 780-790: December, 1971. 



APPENDIX A 

UNIX/24V UTILITIES 

This appendix lists the user utility programs 

that have been ported to UNIX/24V. Most all programs 

were taken from the PDP-II Release 7 distribution of 

UNIX. In some instances the utility runs under both . 

the VULCAN operating system and UNIX/24Vi these are 

marked with a * A list of the major utilities not 

provided under UNIX/24V is also included. Items in the 

latter list were not moved because their implementation 

was highly nonportable, or because they were of little 

utility to the project. 

- 159 -



Current Utilities 

ar arithmetic as (*) at 
basename cal cat (*) cb 
chgrp chmod chown clri 
cmp comm cp date(*) 
dcheck dd df diff 
du dump dumpd ir echo 
em (*) fgrep file getty 
grep (*) icheck init kill 
Id learn In login 
lpd lpr 1 s (*) mail(*) 
make mkdir mkfs(*) mknod 
mount mv (*) ncheck newgrp 
nice nm (*) od (*) passwd 
pr ps pwd ranlib 
restor rm(*) sed sh 
size (*) split strip stty 
su sum syms sync 
tail tar(*) tee test 
time tr tsort tty 
umount uniq update wall 
wc who write(*) wump 
ya~c(* ) 

- 160 -



adb 

awk 

bc & dc 

lex 

lint 

sort 

tp 

eqn, ptx, 
pubindex, 
roff, tb l , 
nroff, trof f, 

f77, m4, 
ratfor, s truct 

uucp , uux, 
uuc ico , e tc. 

Major Missing Utilities 

requires ptrace system call 

requires lex. 

bc requires dc which is 
complicated, and as yet hasn't 
been looked at for portability 

highly nonportable 

r~quires sort 

tried to port it, but still 
buggy 

no need for it, always use tar 

Text Processing Programs 

etc. 

must have nroff/troff to 
useful, and nroff/troff 
highly nonportable 

Fortran Processors 

be 
is 

f77 uses the portable 
compiler, 
must be 
changes 
language 

so careful study 
made regarding the 

to the intermediate 

Uucp utilities 
low priority, and require 
conversion of a packet driver 
at kernel or user level 

- 161 -


	KIC Document_pp1-12
	KIC Document_pp13-32
	KIC Document_pp33-52
	KIC Document_pp53-72
	KIC Document_pp73-82
	KIC Documentp83-102
	KIC Documentp103-122
	KIC Documentp123-142
	KIC Documentp143-161

